1.Три стороны около окружности четырехугольника относятсяв последовательном порядке как 2:9:28.Найдите большую сторону этого четырехугольника, если изв

1 Январь 0001



1.Три стороны около окружности четырехугольника относятся(в последовательном порядке) как 2:9:28.Найдите большую сторону этого четырехугольника,если известно,что его периметр равен 60.

2.Меньшая сторона  прямоугольника равна 32,диоганали пересекаются под углом 60 градусов.Найдите диагонали прямоугольника.

 

  • 1) Выпуклый четырёхугольник является описанным около окружности тогда и только
    тогда, когда суммы длин противоположных сторон равны. У нас 2х+28х=30х, 9х+Хх=30х, Х=21. Сумма равна 60х = 60, то есть х=1. Значит большая сторона = 28.

    2) В прямоугольнике диагонали равны и в точке пересечения делятся пополам. Половины диагоналей образуют с меньшей стороной равнобедренный тр-к с равными углами при меньшей стороне – основании тр-ка. Значит в нашем случае это равносторонний тр-к с тремя углами равными 60. Значит сторона треугольника (половина диагонали) равна 32, а вся диагональ = 64.







Геометрия

Комментарии закрыты.