В трапеции ABCD основание AD в 4 раза больше основания BC, а площадь трапеции равна 50. Точка О – точка пересечения диагоналей, точка Р – середина ос

1 Январь 0001



 В трапеции ABCD основание AD в 4 раза больше основания BC, а площадь трапеции равна 50. Точка О – точка пересечения диагоналей, точка Р – середина основания AD, точка М – точка пересечения диагонали AC и отрезка BP, точка N – точка пересечения диагонали BD и отрезка CP. Найти площадь треугольника MON. 

  • Треугольники МВС и АМР подобны, и ВС/AP = 1/2; => CM/AM = 1/2; откуда AM = 2*CM; AC = AM + CM = 2*CM + CM = 3*CM; СМ = AC/3; 
    подобны и треугольники ВОС и AOD, и CO/OA = BC/AD = 1/4; то есть AO = 4*CO; AC = AO + OC = 4*OC + OC = 5*AC; CO = AC/5; 
    отсюда MO = CM – CO = AC*(1/3 – 1/5) = AC*2/15;
    Точно так же показывается, что NO = BD*2/15; (ясно, что BO = DO/4; откуда BD = BО  +OD = BO + 4*BO = 5*BO; а из подобия треугольников BNC и PMD => BN/ND = BC/PD = 1/2; ND = 2*BN; BD = ND + BN = 3*BN; далее ON = BN – BO = BD*(1/3 – 1/5) = BD*2/15); 
    Если провести CК II BD, точка К лежит на продолжении AD, то BDKC – параллелограмм, и CK = BD; и угол AOD = угол ACK;
    треугольник ACK подобен треугольнику MON, потому что соответственные стороны пропорциональны (NO = BD*2/15 = CK*2/15; MO = AC*2/15, угол AOD = угол ACK). Коэффициент подобия равен 2/15. 
    Поскольку  AK = AD + BC, площадь треугольника ACK равна h*(AD + BC)/2, где h – расстояние от С до AD, то есть – высота трапеции ABCD и треугольника ACK (словами это можно выразить так - у трапеции и построенного треугольника ”общая” высота и равные средние линии). 
    То есть площадь ACK равна площади трапеции S.
     
    Стороны относятся, как 2/15, значит, площади, как (2/15)^2;
    Отсюда площадь MON равна S*(2/15)^2 = 50*4/225 = 8/9;

    http://znanija.com/task/2426446 эта задача уже несколько раз была







Геометрия

Комментарии закрыты.